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01 Executive Summary

01.1 Introduction

Building on the Centre for Data Ethics and Innovation’s (CDEI) Bias Review, this report systematically reviews
the emerging set of approaches for detecting and mitigating algorithmic bias, and explores their practical
application, both in technical tooling and in the financial services and recruitment sectors.

The concept of bias is difficult to define. It is intrinsically linked to the broader concept of fairness, and
indeed CDEI's Bias Review defines bias as “[referring] to an output that is not only skewed, but skewed in a
way which is unfair”.

Fairness as a concept can be traced to the earliest schools of philosophy, and along with Justice, is perhaps
the most debated issue within politics and social policy. In very recent years, fairness has also become a core
part of recent developments in Al and Machine Learning, with the world’s largest tech firms all making
substantial investments in fairness algorithms. This is perhaps not a coincidence. Al and wider algorithmic
decision making will need to show it can stand up to the same ethical standards as more classic social policy
tools if it is to achieve widespread acceptance and adoption.

By nature, historical notions of bias and fairness have typically not been precisely defined, regarded as
abstract qualities, rather than notions that can be quantitatively measured. They are also very context
specific: it is difficult to codify hard rules, even in abstract terms, about what is ‘fair’ or ‘unfair’, or why.

This does not sit easily with algorithmic decision making. Achieving fairness within algorithms requires not
only definition, but measurement, if it is to be practically implemented. It is also unreasonable to expect a
single, holistic mathematical definition of fairness to emerge which can have generalised application to all
contexts.

In recent years, myriad different approaches have been proposed in the Machine Learning literature for both
defining fairness and for intervening to mitigate biases, and practical tooling is starting to emerge which
implements these approaches. As this report sets out, these have merit and indeed we believe that
approaching fairness as a mathematical/statistical discipline is essential if Al and Machine Learning are to
achieve widespread adoption.

It is also important to recognise the limitations, both individually and collectively, of algorithmic fairness
approaches, especially for organisations and practitioners seeking to operationalise them. No one definition
is holistic by nature. For instance, they are often mutually incompatible; there is as yet no clear decision
making framework for selecting between them; and crucially they are generally relatively insensitive to wider
philosophical notions of fairness which are by nature hard to codify. Furthemore, the legal framework has not
caught up, such that there is a sufficient body of guidance or case law about which algorithmic approach to
follow in practice, or what can be considered a legally-compliant approach in different circumstances.

Taken together, this poses a complex set of challenges for practitioners, organisational leaders, and
policymakers alike. They need an ability to understand the myriad different algorithmic definitions and
intervention approaches, and how they fit together. Crucially, what is really missing is practical guidance
about how to create fair algorithms, monitor and audit them using the most up-to-date tools and techniques.
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01.2 About this work

To answer this challenge, Faculty was commissioned by the CDEI to assess and compare the various
approaches to bias mitigation; to understand the use of these approaches in key sectors of the economy;
and to develop practical guidance for firms looking to implement fair approaches and monitoring in their
business processes. Faculty has developed three deliverables, which together produced:

- A main report, this document

- An accompanying Implementation Handbook, with how-to-guidance and technical standards for
organisations to use to achieve fairness on algorithms in operational use

- A demonstration web application, showing how fairness can be achieved in practice via two reference
implementations

Faculty approached this work in four stages:

1. We have undertaken a systematic literature review of the latest state of the art on ways of defining
algorithmic fairness and intervening to mitigate bias. While unlikely to be fully exhaustive, this brings
into one place all of the key definitional and intervention approaches and compares them
side-by-side and assesses their strengths and limitations.

2. We have brought all of the key concepts together into a digestible end-to-end framework, we believe
this is the first time it has been done:
- Firstly we introduce an overall organising framework for algorithmic fairness, and map the
different algorithmic fairness definitions identified in the literature against this
- Secondly we map these definitions of fairness against ways to intervene to achieve them -
considering both the timing of intervention and the different intervention approaches

3. To understand the interpretation of fairness within industry and practical use of fairness tools, we
conducted an Industry Review focussing on the Financial Services and Recruitment. We undertook
interviews with a small sample of firms, academics and industry bodies to understand the revealed
practices and current audit approaches in these sectors, summarising our findings and providing
detailed case studies of relevant firms. It is worth noting that our consultation is not representative
of the industries as whole, but rather provides a snapshot on the practical use of these tools.

4. To support firms and their technical teams as they begin to practically implement algorithmic fairness,
we provide an accompanying Implementation Handbook. This contains:
- A generalisable workflow of questions that guides a firm through the process of building,
monitoring and reviewing fair algorithm deployments.
- A corresponding set of technical questions and standards that provide technical teams with the
guidance, supporting mathematical notation, and a review of prominent Al fairness tools that
they can draw upon.
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01.3 Structure of the report

This main report contains the following sections:

e Section 02: describes and assesses the different algorithmic notions and definitions of fairness, and
places them within a conceptual framework.

e Section 03: builds from this conceptual framework to map the different ways of intervening to achieve
fairness, including timing of intervention and specific intervention approaches.

e Section 04: analyses the overall limitations and inherent challenges with algorithmic fairness approaches,
but goes on to explain their central importance and usefulness, stemming from their precise statistical
definition and quantification.

e Section 05: summaries our deep-dive into the financial services sector, finding that Fairness Through
Unawareness is currently pervasive although firms are becoming increasingly sophisticated in their
approaches, partly in expectation of further regulation.

e Section 06: summarises our deep-dive into the recruitment sector, finding that there is an explosion of
interest in this topic and tools becoming available, and that key debates are underway about whether
algorithmic decision making should seek to correct historic recruitment biases, or risks exacerbating it.

e Section 07: concludes the report.

e Annex A: assesses the broader set of algorithmic definitions of fairness identified in the literature,
including those not yet ready for operational use at scale.

e Annex B: contains a detailed list of the references used and wider literature that we drew on to support the
report.

01.4 Acknowledgements

This report would not have been possible without the rich academic literature around mathematical notions
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Finally, we are hugely grateful to the wisdom and oversight of the CDEI's Bias Review Steering Group for their
steers and drafting suggestions as the report and accompanying material was finalised.
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02 Algorithmic Notions of Fairness

Bias, as defined in the CDEI bias review, “[refers] to an output that is not only skewed, but skewed in a way
which is unfair”. This immediately raises the question of how precisely we define (un)fairness.

Fairness, and other notions such as Justice, are perhaps the most debated issues within politics and social
policy, but ever since Aristotle, have typically been left undefined. Furthermore, they are typically regarded as
abstract qualities, rather than notions that can be quantitatively measured.

This does not sit easily with algorithmic decision making. Achieving fairness within algorithms requires not
only definition, but measurement. And crucially, measurement is necessary if fairness is to be traded-off
successfully with other measurable qualities of an algorithm, in particular a model’s predictive power, which
is typically directly associated with business performance.

We need to recognise that a reasonable qualitative interpretation of what is societally seen as ‘fair’ (i.e. the
abstract quality) is often context-specific. Consequently it is challenging to come up with quantitative
formulations of fairness that capture all of the nuances that can arise. As a result the academic literature has
seen the introduction of dozens of competing notions of fairness, each with their own merits and drawbacks,
and many different terminologies or ways of categorising these notions, none of which are complete.

In this section of the review we introduce many of the more commonly used notions, commenting on some
of the trade-offs between different notions that should be taken into account when selecting a particular
definition.

For the first time, we also seek to structure these into a single overall framework, capturing the different
lenses by which the notion of fairness can be understood, then populate the commonly-used notions in the
literature in that framework according to their substantive features.

As shall be explored, partly in this section and then in aggregate in Section 04, these notions of fairness can
overlap in different ways, which can add complexity to the policymaker and practitioner. Some are by nature
mutually exclusive — it is impossible, for example, to achieve Demographic Parity (‘Independence’) and
Equalised Odds (‘Separation’) concurrently if there are underlying differences in the features of different
groups - whereas some can be achieved simultaneously.

02.1 Algorithmic fairness framework

As above, the literature is awash with not only myriad different notions of fairness, but also myriad different
terminologies and ways of describing these. Furthermore, there are different levels that these can be
categorised at, for example distinguishing at a high level between ‘procedural’ and ‘outcome’ fairness.

This can be confusing to both data science practitioners and wider stakeholders. We therefore try to set out
an overall framework for categorising the different notions of fairness, in a way that can make sense of these
different concepts (Figure 3 below).

In Section 03 and Annex A, we then extend this framework out to the different intervention approaches for
achieving these notions of fairness. More precisely, in Section 03.1 we introduce intervention methods
addressing fairness notions from the framework which have most practical relevance, while in Annex A.1 we
present intervention techniques addressing remaining notions.

We then map the current set of available open-source Al fairness tools against these - in doing so, this can
be read as an end-to-end framework, giving the practitioner line of sight all the way from high-level concepts
of fairness all the way to the tooling available to achieve these.
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The below figure summarises our categorisation. Note: we have capitalised terms defined in the table for
clarity throughout the report.

We distinguish between two schools of thought: Procedural Fairness and Outcome Fairness. Within

Outcome Fairness, we can make two additional distinctions between Causal and Observational notions of
fairness, as well as Individual and Group notions.

Procedural Fairness Outcome Fairness

Observational Causal

Group : 3) Demographic Parity
1 (Independence’)
1

: 4) Conditional Demographic

1) Fairness Through { Parity
1

Unawareness

8) Unresolved
Discrimination

o : 5) Equalised Odds
2) Feature-Apriori Fairness, 1 (‘Seperation’) 9) Proxy Discrimination
Feature-Accuracy fairness, :
and Feature-Distributional I

fairness

6) Calibration (‘Sufficiency’)

7) Sub-Group Fairness

Individual 10) Individual Fairness 11) Meritocratic
Fairness

12) Counterfactual
Fairness

Figure 3: Organising framework of different algorithmic fairness notions
Note: the notions of fairness in the red highlighted box refers to the notions we prioritised, based on how amenable the notions are for
practical use.

These are then described and assessed in detail in the remainder of this section.

02.2 High-level distinction: Procedural vs. Outcome fairness

Approaches to formalising the definition of fairness firstly fall into two broad categories: Procedural Fairness
and Outcome Fairness.

02.2.2 Procedural Fairness

Procedural Fairness is concerned with fair ‘treatment’ of people, i.e. equal treatment within the process of
how a decision is made. In the specific context of Machine Learning this often means considering what
information is given to the algorithm with which to make a decision. To date, as set out below, this has often
led to Procedural Fairness being interpreted as not including a protected or sensitive attribute in the process
when making a decision — so called ‘Fairness Through Unawareness’ — partly for simplicity but also partly to

avoid introducing legal risk. However, as will be explored later, this is not often an effective strategy: indirect
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discrimination can still occur through the presence of other variables or features within a model which are
correlated with the protected attribute in question.

More widely, as a Machine Learning model is embedded into an overall decision-making process, Procedural
Fairness can encompass wider elements of the decision-making process. These include aspects such as
offering opportunities for individuals to challenge decisions about themselves, and seek redress. In this
report, we focus on the Machine Learning aspects of Procedural Fairness only.

02.2.2 Outcome Fairness

By contrast, Outcome Fairness is concerned with ‘fair results’ of a decision making process, i.e., equality
across different groups with regards to the outcomes of actually made decisions. Most of the existing
literature on algorithmic fairness falls in this category (Grgi¢-Hlaca et al. 2018).

02.3 Conceptual breakdown of Outcome Fairness

Outcome Fairness can be further divided along two axes: Individual vs. Group notions of fairness, and Causal
vs. Observational approaches. These two axes are complementary, and any combination of the two choices
has been considered in the literature, i.e. both Group and Individual Fairness has been studied from
Observational and Causal perspectives.

02.3.1 Group vs. Individual

Fairness can be studied both at the Group level or the Individual level leading to different classes of fairness
measure. Group notions of fairness first aggregate outcomes by group, then compare the aggregated group
outcomes to determine whether the outcomes are fair. Individual notions of fairness compare the outcomes
for individuals to determine whether the outcomes are fair.

In order to clarify this distinction, let us consider an example from hiring: A typical Group fairness notion
relevant in this context (Equalised Odds, below) would ask that among the qualified applicants men and
women are invited at the same proportion. Individual Fairness would ask that similarly qualified applicants
have a similar chance of being invited, then if not, explore how the differences correlate with gender.

It is worth noting that Group and Individual notions are not mutually exclusive: an idealised ‘fair’ algorithm
could achieve both simultaneously.

02.3.2 Causal vs. Observational

Many of the notions of fairness that have been introduced are Observational in nature, that is they can be
formulated fully in terms of the joint distributions of outcomes, decisions, features and sensitive attributes.

The field of causal inference allows us to go beyond this, incorporating knowledge about how variables
influence each other rather than just measuring correlations. Consequently we can consider the effect of
interventions, or counterfactuals (e.g. what would have happened if the sensitive data were different?).

These tools and ideas have been applied to the study of bias in decision making algorithms. There is an
attractive alignment between causal notions of bias and intuitive understanding of bias, but a requirement
for performing a causal analysis is typically the specification of a causal model of the data, which can be a
restrictive requirement. We discuss these advantages and disadvantages in detail in Section 04.
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02.4 Assessing algorithmic definitions of fairness against this framework

Below we describe and assess the core algorithmic definitions of fairness which have emerged in the
literature and which we have mapped into the conceptual framework above.

We prioritise fairness notions from the framework that are most amenable for practical use and applicability
and present those here, while we refer to the remaining ones in Annex A1. It is worth drawing out some
general statements about this, to explain our reasoning for inclusion: (Note: the numbers in parentheses
refers to the notions numbered in Figure 3 above)

- Group Observational notions (notion numbers 3-6 in the highlighted box, at the centre of the framework in
Figure 3), lend themselves best to current practical application, as they are simple to compute and
provide meaningful measures for aggregated differences between groups. Further, the majority of
existing mitigation tools address one of Demographic Parity, Conditional Demographic Parity or
Equalised Odds. Besides, we introduce Calibration which is closely related to model performance but
also yields a useful measure for aggregated differences between groups relevant for fairness
considerations. They are therefore the primary focus of the remainder of this report, the
accompanying Implementation Handbook, and the demonstration web application.

- Fairness Through Unawareness (1) is in common use, either as a deliberate approach or as a default,
including widely in the finance and recruitment sectors. We therefore include an assessment of it in
this main report, albeit note its substantial flaws.

By contrast, the fairness notions in the Annex are generally in less common use as the ones we introduce
here, and practical implementations of mitigation techniques that address these notions of fairness are fairly
limited:

- Other procedural notions (2) are promising, but require access to information which might not be
available and therefore impedes direct applicability, e.g. detailed input from stakeholder panels
(Feature-Apriori Fairness)

- Causal notions (8, 9, 11, 12) are again promising but rely on causal graphs which govern the fairness
notion, which are not generally available.

- Individual and Sub-Group notions (7, 10) capture the idea that “similar individuals should be treated
similarly”. However, there is no general way to define similarity for individuals, and constructing a
suitable metric in a way that doesn't itself reflect the exact biases we want to mitigate is extremely
challenging. As a result individual fairness is generally less practical than other notions of fairness.

Note: A specific algorithmic definition of fairness is sometimes introduced in the literature under a variety of
different names. We acknowledge this fact by stating the existing alternative namings under the appropriate
fairness definition, while for our own namings we follow the convention of choosing what has been most
widely used in the literature.

02.4.1 Procedural definitions

1) Fairness Through Unawareness

Fairness Through Unawareness is characterised by withholding from the algorithm access to the protected
attributes or any close proxies. The premise is that if the model is “unaware” of the protected attributes
then it cannot discriminate with respect to those attributes.

Fairness Through Unawareness is truly a procedural approach in that it requires that protected attributes
are not used at all by the decision-making algorithm, and doesn’'t make any requirement of the outcomes.

The primary criticism of Fairness Through Unawareness is that it is uncontrolled, and because of
correlations in the data, there is no guarantee that the model is not able to discriminate. For example we
might withhold information about each individual's race, but allow the model to use the individual's
postcode to make decisions. If postcode happens to be highly predictive of race then the model could
indirectly discriminate.
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Also known as: Anti-classification (Corbett-Davies and Goel 2018)

Categorisation: Procedural

02.4.2 Group-based Outcome definitions

3) Demographic Parity

Demographic Parity, also often referred to as ‘Independence’, is a measure of Group fairness which
requires that outcomes for different protected groups are equally distributed. Specifically we require that
the probability distributions of protected attributes and model outputs are statistically independent
(Calders, Kamiran, and Pechenizkiy 2009; Feldman et al. 2015; Faisal Kamiran and Calders 2012; Zafar,
Valera, Rodriguez, et al. 2017).

In the context of an algorithm that assigns a score to individuals, which is then thresholded to obtain a
decision — e.g. a risk score in a loan approval algorithm where loans are approved to all who receive a risk
score below some threshold — we can apply the Demographic Parity constraint at two different levels: at
the score or the decision levels. In the former case, we require that the distribution of scores is the same
for all protected groups, which is to say the proportion of individuals from each group receiving a score in a
particular range is equal. In the latter case, we require only that the proportion of individuals being
approved is the same across all groups. It's not hard to see that the former implies the latter, but not vice
versa.

A number of criticisms have been made of Demographic Parity. The first is that the requirement that there
be no association between protected attributes and model outputs is often in tension with the underlying
task, specifically whenever there is a correlation between the protected attribute and the target variable. In
particular, it is possible that a perfect predictor, that is able to correctly predict the true outcome in every
instance, would itself not satisfy Demographic Parity.

On the other hand, a model satisfying Demographic Parity may have limited utility. Indeed, the disconnect
between model utility and Demographic Parity can perversely lead to increased unfairness between
groups. Consider a hypothetical model that correctly identifies qualified candidates from one group, and
randomly picks candidates from another group at the same rate. Such a model satisfies Demographic
Parity, but can cause harm to the disadvantaged group through poor predictions. In this example, a
mathematical notion of fairness has been achieved, but allocative efficiency strongly matters: overall utility
is reduced if unsuitable candidates are selected. Although a stylised example, it highlights that the
disutility effects are such that all groups can be made worse off, even the ones for whom the Demographic
Parity condition has defined the outcome as ‘fairer’.

Demographic Parity is appropriate in cases where we truly believe that the protected attributes should have
no bearing on the outcomes, for example a face detection algorithm — that might be used to zoom / pan a
webcam for video conferencing — should not be more likely to detect faces for one race than another.
However, in other cases the argument for Demographic Parity may not be so clear. For example in
recruitment, certain protected groups may be less likely to have the required qualifications due to
socioeconomic disadvantages. Though we may idealise a world in which such systemic biases didn't exist,
ignoring them and imposing Demographic Parity in order to redress such imbalances can actually have
harmful consequences.

Also known as: Statistical parity (Dwork et al. 2012), Group fairness (Dwork et al. 2012),
Independence (Barocas, Hardt, and Narayanan 2019)

Categorisation: Outcome -> Group - > Observational
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4) Conditional Demographic Parity

Conditional Demographic Parity is a generalisation of Demographic Parity that takes into account certain
“legitimate risk factors” with respect to which we do not consider it unfair to discriminate. Specifically, an
algorithm satisfies Conditional Demographic Parity if the model outputs are statistically independent of the
protected attributes once the aforementioned legitimate risk factors are taken into account' (Faisal
Kamiran, Zliobaité, and Calders 2013; Corbett-Davies et al. 2017).

Let us return to the loan approval example. A legitimate risk factor might be the annual income of the
individual. Whereas with Demographic Parity we require that the distribution of scores is the same for all
protected groups, here we require that among individuals with a particular annual income, the distribution
of scores across the protected groups is the same. Hence if one particular group on average has lower
annual incomes, then overall they might receive lower scores, however individuals with the same annual
income are treated the same, regardless of their protected attributes.

Much like Demographic Parity, we can apply Conditional Demographic Parity at either the score level or the
decision level.

Conditional Demographic Parity addresses some of the weaknesses of Demographic Parity, for example a
perfect classifier can achieve Conditional Demographic Parity even if there is a correlation between the
protected attributes and the outcomes provided that the legitimate risk factors fully account for this
correlation. In the case of the running loan approval example, if protected groups differed in their average
ability to pay back a loan, but this was fully accounted for by differences in annual income across the
groups then hypothetically a model could be both 100% accurate and still achieve Conditional
Demographic Parity.

A drawback of Conditional Demographic Parity is that if the legitimate risk factors contain historical
biases, which is likely the case with annual income in our example, then imposing Conditional
Demographic Parity could lead to those historical biases being perpetuated.

Categorisation: Outcome -> Group -> Observational

5) Equalised Odds

Equalised Odds (also commonly referred to as ‘Separation’) is another observational notion of Group
fairness, whose introduction was motivated by the tension between performance and fairness that
Demographic Parity suffers from. Intuitively it requires that qualified and unqualified candidates are treated
the same, regardless of their protected attributes. More precisely, an algorithm satisfies Equalised Odds if
the decisions are statistically independent of the protected attributes, conditioned on the outcome (Hardt,
Price, and Srebro 2016; Zafar, Valera, Gomez Rodriguez, et al. 2017; Kleinberg, Mullainathan, and Raghavan
2016).

Intuitively, this means that our model scores can depend on the protected attribute, but only in so far as the
true outcomes do. Equivalently, the distribution of model outputs across different protected groups are the
same when outcomes are held fixed. In the case of binary classification, Equalised Odds can be
summarised as the requirement that true positive rates are the same for all protected groups, as are the
false positive rates. In other words, the chance that a qualified individual is overlooked, or that an
unqualified individual is approved, is the same across all protected groups.

' By “taken into account” we mean statistically independence conditional on the legitimate risks.
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Equalised 0dds admits a perfect model as a valid option, and is further able to deal with unequal base
rates between protected groups. While being of significant practical relevance (Larson et al. 2016),
Equalised Odds results in different groups being held to different standards (see Calibration) when those
groups exhibit different risk distributions (Corbett-Davies et al. 2017). The latter can be observed when the
risk distribution is related to feature choice, e.g., number of prior arrests being an important indicator for
recidivism of convicts while being correlated with race.

Furthermore, where systemic bias is present in the labels, Equalised Odds is at risk of perpetuating this
bias. For instance, assume that for the same type of jobs advertised by a company, there is a larger
proportion of qualified applications in group one than in group two, while both groups have the same size.
Then, adhering to equal opportunity results in hiring a larger proportion of candidates in the first group than
in the second. If the advertised jobs are good jobs, they will generally improve the living condition and
education for their employees’ children, which in turn leads to them having better professional
opportunities, and so on.

Also known as: Conditional Procedure Accuracy (Richard Berk, Hoda Heidari, Shahin Jabbari,
Michael Kearns, Aaron Roth 2018), Disparate Mistreatment (Zafar, Valera, Gomez Rodriguez, et al.
2017), Separation (Barocas, Hardt, and Narayanan 2019)

And relaxations of it: Balance for positive / negative classes (Kleinberg, Mullainathan, and Raghavan
2016), Predictive Equality (Chouldechova 2017), Equalised Correlations (Woodworth et al. 2017)

; lisati
e Equality of opportunity: A relaxation of Equalised Odds that requires only that qualified candidates
are treated equally across all protected groups. Equivalently, the true positive rates across all
protected groups is the same, but there is no requirement made of false positive rates.
¢ Predictive equality: Relaxation of the above checking among negative outcomes (applicable
when negative outcome is considered as the advantaged one - e.g. COMPAS)

Categorisation: Outcome -> Group -> Observational

6) Calibration

An algorithm satisfies Calibration if the outcomes are statistically independent of the protected attributes,
conditioned on the decision (Crowson, Atkinson, and Therneau 2016; Pleiss et al. 2017; Grgi¢-Hlaca et al.
2018) (first cited in a few papers in medical world - Crowson).

In other words, the decision making algorithm captures all of the influence of the protected attribute on the
outcomes, once the model has made a prediction or assigned a score. We would gain no more information
about the true outcome than is already contained in the prediction. Consider a model that systematically
underpredicts for a particular protected group. This model would not satisfy Calibration, because given a
prediction for an individual, if we found out the individual was from that protected group we would adjust
our expectations for the true outcome. That is, the group membership gave us some additional information
that was not captured by the prediction.

Calibration is closely related to the more common use of the term “Calibration” in Machine Learning. There,
Calibration refers to model probabilities being representative of the real world outcomes. Specifically,
aggregating all data points for which the model predicted a 70% chance of a particular outcome, we would
hope to see that outcome occurring about 70% of the time. Calibration as used by the fairness community
is equivalent to the model being well calibrated, in the conventional sense, on each protected group.

A big advantage of Calibration is that it is well aligned with accuracy objectives in many models, in
particular many Machine Learning models tend to be approximately calibrated simply as a consequence of
the way they have been trained.
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On the other hand, this means that imposing Calibration on a model may not represent a particularly
significant intervention. Furthermore, since Calibration takes into account the true outcomes, like
Equalised Odds it is susceptible to perpetuating historical biases.

Calibration across more complex combinations of multiple protected attributes has been addressed in
(Hébert-Johnson et al. 2018; Kilbertus et al. 2018).

Also known as: Sufficiency (Barocas, Hardt, and Narayanan 2019), Conditional Use Accuracy (Richard Berk,
Hoda Heidari, Shahin Jabbari, Michael Kearns, Aaron Roth 2018), Relaxations of Calibration: Predictive
parity (Chouldechova 2016)

Categorisation: Outcome -> Group -> Observational

02.5 Key considerations of the different definitions

At this stage we want to introduce two key issues when considering the different algorithmic definitions
above: the trade-off between fairness and accuracy, and the mutual compatibility of the different definitions:

02.5.1 The trade-off between fairness and accuracy

Whether in broader social policy, or in algorithmic decision making, there is often (though not always) an
inherent trade-off between fairness and accuracy. That is, whether to maximise the overall objective function
(e.g. prediction accuracy of future loan defaults) or ensure that it is fair to different participants. In the case
of algorithmic decision making, this trade-off requires quantification.

An attraction of the mathematically-derived algorithmic fairness notions set out above is that they can be
measured on a continuous scale, and so allow the practitioner to evaluate quantitatively the degree to which
a certain fairness criterion is satisfied. Different definitions of (un)fairness can be expressed via different
measures. Often, the degree of unfairness can be formalised as a positive number, i.e., the smaller the
number the more fairness holds.

For less fair models, interventions can be applied which increase the model’s fairness in its predictions, as
explored in section 03 below. However, it is a general paradigm in Machine Learning that the accuracy of a
model decreases with increasing fairness, or according to Berk et al. (2018), “demanding fairness of models
will always come at a cost of reduced predictive accuracy”. The severity of this trade-off depends on a
number of factors, such as the underlying task and data at hand, the choice of fairness notion and the way of
measuring it and the applied method of mitigating unfairness.

Written theoretically in this way arguably understates both the ethical and practical importance of this
trade-off: this trade-off is at the heart of how we want algorithmic models to behave, just as is at the heart of
questions of social policy and social justice. This is arguably the core issue when thinking about how to
mitigate bias within algorithms in practice. Our choices with respect to accuracy and fairness reveal the
aims and desires for how a given model both behaves and is used in context.

Very often, on a practical level, the accuracy of models will not only directly affect profitability, but also be a
source of competitive advantage, while also being an ethically justifiable aspiration of models in its own
right. Understanding and evaluating this trade-off is therefore crucial for creating adaptable policy for Al
fairness. At the core of this stands the question what level of fairness is considered necessary and useful
given a certain task and fairness notion.

In a simplified view, higher levels of fairness may be desirable for the purpose of equality across society.
However, higher levels of accuracy may be desirable for the purpose of efficacy with regards to the primary
goal of the underlying model, e.g., a higher performance of a credit scoring model can lead to a higher
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short-term profitability of its business. That said, this stylised trade-off of societal fairness vs short-term
predictive accuracy/profitability is not as clear a dichotomy as this simplified view. Indeed there is increasing
recognition across industry of the long-term business benefits, which can come from promoting greater
fairness. Details on the tension between model accuracy and fairness are addressed in section 04.

02.5.2 Mutual compatibility between algorithmic fairness definitions

Different notions of fairness can be satisfied simultaneously only in certain cases, e.g. Individual and Group
fairness (Zemel et al. 2013). They are typically mutually exclusive, meaning that neither two definitions can
be satisfied simultaneously (Kleinberg, Mullainathan, and Raghavan 2016; Pleiss et al. 2017; Corbett-Davies
et al. 2017; Lipton, McAuley, and Chouldechova 2018; Richard Berk, Hoda Heidari, Shahin Jabbari, Michael
Kearns, Aaron Roth 2018).

As a consequence, a practitioner aiming to mitigate bias generally has to make a choice as to which notion
of fairness to enforce, thereby necessarily trading off other notions (Corbett-Davies et al. 2017).

In general, the decision over which measure of fairness to impose needs an extensive contextual
understanding and domain knowledge. One should also understand the sources of bias and downstream
consequences of a fairness intervention before imposing it on the model’s decisions. This is explored in
more detail in section 04 of this report, as we build towards a generalisable approach for practitioners when
seeking to achieve fairness within algorithms in the accompanying Implementation Handbook.
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03 Fairness interventions

Having defined and assessed the different technical notions of fairness currently in the academic literature,
we next set out a framework for summarising and assessing the interventions to achieve these, particularly
according to the timing at which the intervention is made.

We have also mapped the current suite of leading algorithmic fairness tools available against this
framework, set out in the accompanying Implementation Handbook. This gives practitioners and
policymakers, we believe for the first time, a structured end-to-end view of latest developments of applying
algorithmic fairness approaches in practice, running through each of:

A. High-level distinction between Procedural and Outcome fairness
B. Different conceptual types of Outcome fairness

C. Different algorithmic definitions of fairness, mapped against these
D. Intervention timing, mapped against the different definitions

E. Theoretical intervention approaches mapped against this

F. And finally, practical open-source tools available, again mapped

03.1 Intervention framework

Below in Figure 4, we set out an overall framework for categorising the different intervention approaches to
detect and mitigate bias. This categorises intervention approaches according to:

1. The timing of intervention - either ‘pre-processing’, ‘in-processing’, or ‘post-processing’
2. Which notion of fairness is sought — according to the notions set out in Section 02

In Figure 4, we populate the framework with the latest technical approaches identified in the literature. We
summarise each of them briefly and give more details in the Technical Standards, including available open
source implementations.

As before, we prioritise for fairness notions with largest practical relevance, and hence focus here only on
intervention methods addressing the definitions detailed in section 02.4. The intervention methods

addressing the remaining fairness notions are discussed in Annex A.2.

Group notions
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Demographic Parity

Pre-processing

In-processing

Post-processing

Data reweighting /
resampling:

- (Calders, Kamiran,
and Pechenizkiy 2009)
- (Faisal Kamiran and
Calders 2012)

Label modification: -
(Calders, Kamiran, and
Pechenizkiy 2009) -
(Faisal Kamiran and
Calders 2012)

- (Luong, Ruggieri, and
Turini 2011)

Feature modification:
- (Feldman et al. 2015)

Constrained
Optimisation

- (Corbett-Davies et al.
2017)

- (Agarwal et al. 2018)
- (Zafar, Valera,
Rodriguez, et al. 2017)

Regularisation:

- (Kamishima et al.
2012)

Naive Bayes/Balance
models for each
group: - (Calders and
Verwer 2010)

Naive Bayes/Training
via modified labels:

Naive
Bayes/Modification of
model probabilities: -
(Calders and Verwer
2010)

Tree-based leaves
relabelling:

- (F. Kamiran, Calders,
and Pechenizkiy 2010)

Label modification: -
(Lohia et al. 2019) (F.
Kamiran, Karim, and
Zhang 2012)
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Conditional
Demographic Parity

Equalised Odds

Calibration

Individual Fairness
Individual notions (see
Annex A)

Counterfactual
Fairness
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Optimal clustering /
constrained
optimisation: - (Zemel
et al. 2013) - (Calmon
etal. 2017)

Auto-encoding:
- (Louizos et al. 2016)

- (Calders and Verwer
2010)

Tree-based splits
adaptation:

- (F. Kamiran, Calders,
and Pechenizkiy 2010)

Adversarial debiasing:
- (Zhang et al. 2018) -
(Adel et al. 2019)

Constrained
optimisation:

- (Corbett-Davies et al.
2017)

Adversarial debiasing:

- (Zhang et al. 2018) -
(Adel et al. 2019) - by
passing cond. variable
to adversarial

Constrained
optimisation:

- (Corbett-Davies et al.
2017) (predictive
equality) - (Agarwal et
al. 2018) - (Zafar,
Valera, Gomez
Rodriguez, et al. 2017)
- (Woodworth et al.
2017)

Adversarial debiasing:

- (Zhang et al. 2018) -
(Adel et al. 2019)

Decision threshold
modification (ROC
curve)/ constrained
optimisation:

- (Hardt, Price, and
Srebro 2016)

- (Woodworth et al.
2017)

Unconstrained
optimisation:

- (Corbett-Davies et al.
2017)

Information
Withholding:

- (Pleiss et al. 2017) -
achieves
simultaneously a
relaxation of Equalised
Odds

Pre-processing

In-processing

Post-processing

Optimal clustering /
constrained
optimisation: - (Zemel
etal. 2013)

Constrained
optimisation:

- (Dwork et al. 2012) -
(Biega, Gummadi, and
Weikum 2018)

Label modification: -
(Lohia et al. 2019)

Prediction via
non-descendants in
causal graph:
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- (Kusner et al. 2017)

Two-player zero-sum

Subgroup Fairness game:
- (Kearns et al. 2018) -

(Kearns et al. 2019)

Figure 4: Fairness intervention framework

There are four important points to stress, when reading the rest of this section:

e For the intervention approaches set out in Figure 4, we provide a short title description for each, which
describes the essence of the approach used (e.g. ‘constrained optimisation’). This is not necessarily
the terminology used by the authors, but we felt this was better to aid clarity and consistency.

e Several of the notions of fairness have multiple intervention approaches: some notions of fairness
have been studied more extensively than others, and may lend themselves to different mitigation
strategies, each with their own trade-offs, such as performance and complexity.

e Some notions of fairness are only achievable during algorithm development or retrospectively: for
example, for Calibration, the notion of fairness is tied to the classification task (in the sense that it
depends on the labels), and consequently can only be performed in- or post-processing.

e We have assessed the intervention approaches relating to Individual notions of fairness in Annex A.2,
on the basis they are currently less amenable to widespread application.

e Some of the notions of fairness explored in section 02 do not yet have a practical intervention
approach developed, and hence are not yet included in the framework above.

03.2 Intervention time

Building a decision making algorithm is a multi-stage process, so there are numerous opportunities to
intervene to correct unfairness. The stage of the process at which an intervention is made is a useful
distinction, as it has direct implications on the available methodology and type of intervention. Hence, we
shall distinguish between approaches along this axis.

03.2.1 Pre-processing

Pre-processing interventions take place before the model is created. They generally make a modification to
the data that the model will be trained on, aiming to remove possible sources of unfairness before the model
even sees the data. Examples of preprocessing can be found further down in this section.

There are advantages to taking this approach. First, once data has been pre-processed, it can in principle be
used for any downstream task, the intervention must only be made once. Second is that any model that is
trained on the data does not need to be modified itself, hence pre-processing interventions are generally fully
model agnostic.

However, there are also some general limitations. The first is that while it may seem attractive that data only
needs to be pre-processed once before it can be used in multiple downstream applications, this view
neglects the fact that the nature of the downstream task usually ought to inform selection of an appropriate
notion of fairness. Hence, we cannot really decouple pre-processing and the task requiring the intervention.

Moreover, pre-processing data in an application agnostic way means we cannot incorporate labels into the
pre-processing, which in turn means we cannot address notions of fairness that are stated in terms of the
class labels such as Equalised Odds or Calibration. Indeed, most of the pre-processing interventions present
in the literature do not incorporate outcomes, only model inputs and protected attributes. Hence they are not
well suited to addressing notions of fairness, such as Equalised Odds, where the definition is coupled to the
outcomes. Instead, they address definitions of fairness, such as Demographic Parity which can be
formulated without knowledge of the outcomes.
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Finally, these approaches often end up being less performant than other approaches in terms of the trade-off
between fairness and accuracy, in part because they often aren’t able to co-optimise fairness and accuracy
on a specific task. That being said, pre-processing approaches do not need to be used in isolation, and could
be a first step in a pipeline that incorporates additional interventions.

Some preprocessing methods only require access to the protected attributes in the training data, however
not in the test data (Calders, Kamiran, and Pechenizkiy 2009; Zemel et al. 2013).

Examples of pre-processing algorithms

We order example algorithms according to the fairness notion they address. Pre-processing methods
generally intend to achieve Demographic Parity, or as in (Zemel et al. 2013) both Demographic Parity and
Individual Fairness.

Demographic Parity

Data reweighting / resampling: The authors (Calders, Kamiran, and Pechenizkiy 2009) present a
pre-processing approach that attaches weights to the data, so certain types of observations are more
influential during training, thereby balancing out the label distributions across different protected groups.
The resulting weights can also be used to resample the data set with replacement to create a fair
transformed data set (Faisal Kamiran and Calders 2012).

Label modification: In (Calders, Kamiran, and Pechenizkiy 2009; Faisal Kamiran and Calders 2012), an
approach is introduced that changes the labels on qualified data points which are selected according to a
ranking algorithm in order to eliminate any disadvantage a protected group may have. The authors (Luong,
Ruggieri, and Turini 2011) apply a k-Nearest Neighbours (kNN) approach that flags data points as being
discriminated if a significant difference in decision outcomes is found among their neighboring points
belonging to the protected group compared to their neighboring points not belonging to it. The labels of
flagged points are then flipped.

Feature modification: The approach of (Feldman et al. 2015) adjusts the marginal distributions of each
feature across different protected groups so that they agree, thus reducing correlation between features
and protected attribute.

Optimal clustering / constrained optimisation: (Zemel et al. 2013) proposes a clustering method which
transforms the original data set by expressing points as linear combinations of learnt cluster centres so
that the transformed data set is as close as possible to the original while containing as little information as
possible about the sensitive attributes. Predicted labels of the transformed data set can be defined so that
similar points are mapped to a similar label prediction. In that sense, Individual Fairness is achieved, too.
Further, in (Calmon et al. 2017) a probabilistic mapping from the original features and outcomes (however
not the protected attributes) is introduced for which the utility of the transformed data is maximised under
fairness constraints.

Auto-encoding: (Louizos et al. 2016) introduce a method that learns a latent representation of the original
data in a generative model so that the representation is invariant with respect to the protected attributes. A
regularisation technique then further removes correlations on the sensitive attributes in the distribution
that generates the transformed data set (Calders, Kamiran, and Pechenizkiy 2009; Faisal Kamiran and
Calders 2012; Calmon et al. 2017; Zemel et al. 2013; Feldman et al. 2015; Louizos et al. 2016).
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Counterfactual Fairness

Prediction via non-descendants in causal graph: The intervention method introduced in (Kusner et al. 2017)
learns the feature selection for a model by choosing non-descendants within a causal graph. The intervention
achieves that the distribution over predictions for an individual and the distribution over prediction for that
individual, if it had been given a different protected attribute in a causal sense, both coincide. Given the fair
feature selection a model can then be trained in the usual way.

03.2.2 In-processing

In-processing methods are applied during the training of the model. They typically involve modifying a
model’s architecture, or modifying the training objective (e.g. by adding a fairness constraint). They seek to
ensure that the resulting trained model does not exhibit unfairness.

In-processing approaches are typically able to achieve high performance as the result of co-optimisation of
performance and fairness which prevents information bottlenecks.

On the other hand, most such interventions require modification and retraining of the model, which can be a
non-trivial undertaking. Furthermore, unlike pre-processing approaches, each model must be intervened on
separately, which requires time, human effort and usually computational resources.

Examples of in-processing algorithms

Any of the fairness notions displayed in Figure 4 above can be achieved by an appropriate in-processing
method. We present the different in-processing techniques according to the fairness notions they address.

Demographic Parity

Constrained optimisation: In the context of predicting recidivism for criminal defendants (Larson et al.
2016; Dieterich, Mendoza, and Brennan 2016), (Corbett-Davies et al. 2017) formulate algorithmic fairness
as maximising a utility function under constraints on group-specific risk thresholds based on which
decisions whether to detain a defendant or not are taken. Their formulation addresses Demographic Parity,
Conditional Demographic Parity, as well as predictive equality (form of Equalised Odds).

Further, (Agarwal et al. 2018) define fair classification as the minimisation of the prediction error under a
general form of linear constraint, which addresses Demographic Parity and Equalised Odds as special
cases. The optimisation is solved by a sequence of cost-sensitive classification problems. In (Zafar,
Valera, Rodriguez, et al. 2017), a loss function associated with a decision-boundary based classifier is
minimised under constraints on the covariance between sensitive attributes and the distance between
features and the classifier's decision boundary in order to achieve Demographic Parity.

Regularisation: (Kamishima et al. 2012) develop an approach to achieve Demographic Parity in a logistic
regression classifier which is based on maximising the sum between utility expressed via probabilities of
classifying data points correctly given their features and further a regularisation term that incorporates the
level of unfairness in the classifier.

Naive Bayes/Balance models for each group: (Calders and Verwer 2010) propose a method based on
naive Bayes that trains a classifier on each protected group separately. The overall prediction of a data
point is given by one of the previously trained classifiers depending on its protected attribute.
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Naive Bayes/Training via modified labels: Another approach also presented in (Calders and Verwer 2010)
introduces latent variables into the Bayesian model which represent fair labels based on which the model
performance is maximised.

Tree-based splits adaptation: (F. Kamiran, Calders, and Pechenizkiy 2010) develop a fair decision tree whose
splitting criterion incorporates, in addition to its contribution to the overall model performance, the degree of
discrimination it creates with regards to Demographic Parity.

Adversarial debiasing: (Zhang et al. 2018) introduce a fairness intervention based on adversarial learning.
Fairness is achieved by training a model to fool a discriminator which aims at identifying the protected
attributes from the model prediction. A further adversarial fairness intervention which is based on
modifying the architecture of an existing neural network model by adding a discriminator at the top layer is
introduced in (Adel et al. 2019).

Conditional Demographic Parity

Constrained optimisation: See (Corbett-Davies et al. 2017) under Demographic Parity.

Adversarial debiasing: The adversarial methods in (Zhang et al. 2018) and (Adel et al. 2019) can be used
to mitigate for conditional demographic parity by additionally passing the legitimate risk factors to the
discriminator.

Equalised Odds

Constrained optimisation: For (Corbett-Davies et al. 2017) and (Agarwal et al. 2018), see Demographic
Parity. (Zafar, Valera, Gomez Rodriguez, et al. 2017) extend their previous approach from (Zafar, Valera,
Rodriguez, et al. 2017), in which the fairness constraint expressed via the classifier's decision boundary
allows for bounding the difference in misclassification rates for the different protected groups. Further,
(Woodworth et al. 2017) formulate fair classification as the sequential use of an in-processing and a
post-processing method. First, the classifier's loss is minimised subject to a relaxed notion of Equalised
Odds allowing for computational tractability. Second, a post-hoc fairness correction similar to (Hardt,
Price, and Srebro 2016) is applied.

Adversarial debiasing: The adversarial methods in (Zhang et al. 2018) and (Adel et al. 2019) can be used
to mitigate for equalised odds by additionally passing the label to the discriminator.

Calibration

Unconstrained optimisation: Removing the group-specific risk threshold constraints in (Corbett-Davies et
al. 2017) (see Demographic Parity) leads to a classifier that satisfies calibration.

03.2.3 Post-processing

Post-processing algorithms modify the model's outputs, seeking to correct unfairness in the model by
applying a post-hoc modification to its decisions.
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Post-processing interventions are typically very flexible, often only requiring scores or decisions from the
original model as well as corresponding protected attributes or labels. As a result, post-processing
approaches are usually fully model-agnostic, and do not require models to be modified or retrained.
Post-processing approaches often perform well, exceeding the performance of pre-processing approaches
and rivaling the performance of in-processing interventions in some cases.

That said, unlike in-processing approaches, they are by nature simpler and do not typically assess the root
cause of the unfairness, hence only effectively treating its symptoms not the original cause. Furthemore, the
accuracy / fairness threshold cannot be pre-set (in contrast to e.g. in-processing constrained optimisation
approaches).

Examples of post-processing algorithms
Demographic Parity

Naive Bayes / Modification of model probabilities: (Calders and Verwer 2010) propose an approach that
modifies the classification probabilities of a naive Bayes estimator to achieve demographic parity, without
significantly altering the number of assigned positive labels.

Label modification: (F. Kamiran, Karim, and Zhang 2012) introduce an intervention method which relabels
data points for which the model prediction is not decisive. Such data points are assigned the positive label
if they belong to the unprivileged group and the negative label otherwise. A similar approach is proposed in
(Lohia et al. 2019), however instead of selecting data points with large model uncertainty for relabelling,
data points are selected which are likely to suffer from individual bias.

Tree-based leaves relabelling: In (F. Kamiran, Calders, and Pechenizkiy 2010), the authors present a
postprocessing algorithm specific to decision trees that allows the user to relabel leaves of a decision tree
to achieve Demographic Parity.

This algorithm is specific to decision trees. It may generalise to ensembles of trees (e.g. random forests)
but the authors do not investigate this.

Equalised Odds

Decision threshold modification (ROC curve)/ constrained optimisation: (Hardt, Price, and Srebro 2016)
introduce the notion of Equalised Odds and equality of opportunity. If only the decisions are available, they
randomly choose either the original decision or fixed outcome in a way that ensures agreement across
both protected groups. If a score function is available, they choose between two carefully chosen
thresholds with a particular probability to ensure agreement of true and false positive rates.

This method can be proved to be the optimal postprocessing algorithm for Equalised Odds, however the
randomness introduced into decision making — which in particular could mean two identical individuals
receive different outcomes — might clash with intuitive notions of fairness.

Calibration

Information Withholding: (Pleiss et al. 2017) introduce a method for achieving a relaxed version of
Equalised Odds, while maintaining Calibration by withholding information. In particular a proportion of the
advantaged group is predicted according to the base rate without considering the model inputs. This
preserves Calibration but allows us to bring the error rates for the two classes closer together.
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This method is attractive in that it achieves one notion of fairness and approximately achieves another.
However, similarly to the intervention of Hardt et al., it introduces randomness into decision making that
might not be compatible with individual notions of fairness. Furthermore, the method requires as input
calibrated classifiers, it does not offer a way to achieve Calibration, only to preserve it.

03.2.4 Interdependencies between pre-, in- and post-processing

One mitigation technique can be understood as in more than one category: It is noteworthy that some
intervention approaches have features which span time categories. For example, Zemel et al. is in most
literature considered pre-processing, however due to the fact that the new data representation is basically
due to training a new model, new predictions are automatically obtained as well, which relates more to
in-processing.

Further, interventions at different timings can be combined: for example it would be possible to both
pre-process and post-process in most cases. This might be attractive if, for example, it is important to
achieve a baseline level of fairness in a model via pre-processing, but then retrospectively post-process for
particularly sensitive or important decisions.

03.3 Existing tools to mitigate bias

There has been an explosion in algorithmic fairness tools coming onto the market in the last one to three
years, that are either commercial or open source, that help with measuring and mitigating unfairness in
machine learning models.

We set out the key open-source tools available today below, and map them to our framework:

Tool Strategies implemented Implementation
IBM Al Fairness 3607 Pre-processing Python, R
Optimal clustering / constrained
optimisation:

- (Zemel et al. 2013)

- (Calmon et al. 2017)

Feature modification:

- (Feldman et al. 2015)

Data reweighting:

- (Faisal Kamiran and Calders 2012)
In-processing

Adversarial debiasing:

- (Zhang et al. 2018)
Regularisation:

- (Kamishima et al. 2012)
Post-processing

Information Withholding:

- (Pleiss et al. 2017)

Decision threshold modification (ROC
curve)/ constrained

optimisation:

- (Hardt, Price, and Srebro 2016;
Woodworth et al. 2017)

2 https://qgithub.com/IBM/AIF360
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Label modification:
- (F. Kamiran, Karim, and Zhang 2012)

FairLearn®

Post-processing

Decision threshold modification (ROC
curve)/ constrained

optimisation:

- (Hardt, Price, and Srebro 2016)
In-processing

Constrained optimisation:

- (Agarwal et al. 2018)

Python

Algorithmic Fairness*

- BlackBoxAuditing
- Fairness-comparison

Pre-processing

Feature modification:

- (Feldman et al. 2015)

In-processing

Regularisation:

- (Kamishima et al. 2012)

Naive Bayes/Balance models for each
group:

- (Calders and Verwer 2010) (slight
alteration to original algorithm as latter
may fail to stop)

Constrained optimisation:

- (Zafar, Valera, Rodriguez, et al. 2017)

- (Zafar, Valera, Gomez Rodriguez, et al.

2017)

Python

Fairclassification®

In-processing
Constrained optimisation:
- (Zafar, Valera, Rodriguez, et al. 2017)

- (Zafar, Valera, Gomez Rodriguez, et al.

2017)
Python

Python

Fairness-aware Data Mining®

In-processing

Regularisation:

- (Kamishima et al. 2012)

Naive Bayes/Balance models for each
group:

- (Calders and Verwer 2010) (slight
alteration to original algorithm as latter
may fail to stop)

Python

FairSight’

In-processing

Prediction via non-descendants in
causal graph:

- (Kusner et al. 2017)
Post-processing

Reranking:

- (Zehlike et al. 2017)

(Allows for other mitigation techniques
to be plugged in)

Standalone Application

3 https://qgithub.com/fairlearn

4 https://qithub.com/algofairness

5 https://github.com/mbilalzafar/fair-classification

6 https://github.com/tkamishima/kamfadm

7 https://github.com/ayong8/FairSight
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04 Limitations of Algorithmic Fairness Approaches

In sections 2 and 3, we introduced measures of fairness and mitigation strategies and discussed some of
the individual limitations of each. In section 4, we collect and discuss some of the wider criticism and
problems with algorithmic fairness that are not specific to any particular notion of fairness or any particular
mitigation strategy.

At the end of this section, we then consider how they can still be useful in practical application, in light of
these limitations.

04.1 Accuracy-fairness trade-off

The accuracy of a model and its fairness are in general in tension as briefly addressed in Section 02.5.1. That
means, enforcing a mathematical notion of fairness generally decreases the performance of the model,
which itself is a valid objective. In the context of constrained optimisation (Agarwal et al. 2018;
Corbett-Davies et al. 2017; Zafar, Valera, Rodriguez, et al. 2017), the trade-off is intuitive: instead of
optimising purely for performance, constraints must satisfy the decrease in the space of possible solutions.
Hence, the resulting solution has the same or, typically, worse accuracy than the unconstrained solution. As a
consequence, practitioners need to understand the severity of this trade-off for the specific task at hand in
order to make informed decisions for modeling or in policy (Richard Berk, Hoda Heidari, Shahin Jabbari,
Michael Kearns, Aaron Roth 2018).

04.1.1 Cases of undesired trade-off choices

In critical applications, such as present in healthcare and justice, the choice between fairness and accuracy
can seem impractical or unethical (Corbett-Davies et al. 2017; Chen, Johansson, and Sontag 2018). It is
advisable that, where possible, bias is mitigated while avoiding the necessity of this trade-off (Chen,
Johansson, and Sontag 2018). This applies when bias exists on the basis of differently well represented
groups in the training data. A subsequently trained classifier tends to expose bias toward the majority group
and rather poor accuracy in the minority group (He & Garcia 2009), which itself can be a procedural form of
bias.

For example, facial recognition algorithms deal with such problems (C. Huang et al. 2019), due to prevailing
imbalances in common benchmark data (G. B. Huang et al. 2008; Kemelmacher-Shlizerman et al. 2016). Bias
due to underrepresentation can be mitigated by the collection of additional data and an appropriate model
choice (Chen, Johansson, and Sontag 2018). However, in most situations, bias is not due to group imbalance
in the data only, but the consequence of historical, human and other sources of bias which cannot be
mitigated by tailored data collection alone.

04.1.2 ‘Biased accuracy’

There can be instances where the source of bias in a classifier's decisions is not due to underlying factors,
but rather due to bias in the underlying data, or more precisely, in the data labels® it was trained on. As a
result, in such circumstances, the reported accuracy of a biased classifier is also biased. The true accuracy
is generally unknown. Hence, enforcing fairness constraints onto decisions need to take this effect into
account in order to produce the desired equalising effects.

That said, in such circumstances, the usual accuracy/fairness trade-off is potentially reversed: i.e accuracy
and fairness being positively associated. It is possible and indeed likely that there will be ways to improve
fairness which simultaneously increase the model's true accuracy (i.e. the actual accuracy of the model,
unmeasured, not the reported measured accuracy).

8 Data labels refer to the specific features applied to individual data points - e.g. applying a label in a recruitment data
set to each individual whether they have a university degree or not.
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04.2 Incompatibility of fairness notions

As has been discussed in Section 02.5.2, some of the key algorithmic definitions of fairness are typically
mathematically mutually incompatible. This makes generalised practical application very difficult for
policymakers and practitioners: definitions will be context-specific, but often seemingly contradictory.

For example, if labels and protected attributes are marginally associated, such as recidivism and race
(Larson et al. 2016), then generally equality of opportunity (generalised form of Equalised Odds) and
Calibration cannot be reconciled (Kleinberg, Mullainathan, and Raghavan 2016; Chouldechova 2017). To see
this, note that if a model satisfies Calibration, then in each risk category, the proportion of defendants who
reoffend is the same, regardless of race. However, the only way of achieving this if the recidivism rate is
higher for one race, is if more individuals from that race are predicted to be high-risk. Consequently, this
means that the model will make more false positives for that race than others, meaning Equalised Odds
cannot be satisfied. Similarly, Calibration or Equalised Odds, and Demographic Parity or Conditional
Demographic Parity, cannot be satisfied simultaneously in practice, and satisfying one typically degrades the
other (Corbett-Davies et al. 2017). To continue with the above example, if a recidivism model satisfies
Demographic Parity, then the chance a defendant ends up in any particular risk category is the same,
regardless of their race. If one race has a higher recidivism rate than the others, that means the model must
make more false negatives for that race in order to maintain Demographic Parity, which as a result means
Equalised Odds cannot be satisfied. Similar arguments apply for other notions of fairness, see ((Kleinberg,
Mullainathan, and Raghavan 2016; Chouldechova 2017) for additional details.

The COMPAS model, a well-known example in the US to predict offender recidivism, brings this point to life.
For a given risk score in the criminal recidivism model (Dieterich, Mendoza, and Brennan 2016), the
proportion of defendants who reoffend is roughly the same independently of the protected attribute
(Calibration). If that weren't the case, the model would likely disagree with the equal protection clause, i.e., it
would apply a different standard between black and white defendants (a risk score of 8 for a white person
would mean something different for a black person). Propublica’s criticism was that black defendants that
did not reoffend are approximately twice as likely to be given medium/high risk. However, ensuring equal risk
scores among defendants who didn't (re-)offend (Equalised Odds) would result in losing Calibration at least
to some degree. That means, one can't be fair in both manners (Corbett-Davies et al. 2017).

Although different notions of fairness are generally incompatible and lead to trade-off choices for
practitioners, there are at least two exceptions:

e The information withholding post-processing method introduced (Pleiss et al. 2017), achieves both
Calibration and a relaxed notion of Equalised Odds. The algorithm starts with a model that achieves
Calibration, and considers calibration-preserving modifications to the model. It then chooses the
calibration-preserving modification that most improves a relaxed notion of Equalised Odds. It is
necessary to relax the definition, as Calibration and the standard definition of Equalised Odds are
incompatible (see above).

e There are multiple approaches aiming on achieving both Individual Fairness and Demographic Parity:
the clustering pre-processing approach from (Zemel et al. 2013) aims at achieving Individual
Fairness combined with notions of Group fairness. Similarly, by selecting samples that likely suffer
from individual bias and changing their predicted label, (Lohia et al. 2019) achieve Individual
Fairness and Demographic Parity simultaneously. Finally, Demographic Parity can be achieved while
treating similar individuals as similarly as possible as proposed in (Dwork et al. 2012).
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04.3 Non-holistic nature of algorithmic fairness definitions

Closely tied to their mutual incompatibility, another key limitation of algorithmic fairness definitions is that
they are by nature not holistic. No one definition will be right in all circumstances.

Furthermore, algorithmic definitions struggle to encompass or codify wider more qualitative characteristics
of fairness, which as discussed early on, do not lend themselves well to mathematical precision but are
nonetheless extremely important.

04.4 Lack of techniques to choose between fairness notions

As above, we can conclude that the practitioner is forced, to some extent, to choose / mathematically
trade-off between different fairness definitions owing to their incompatibility. Therefore, techniques are
needed to help practitioners carry out that weighing up.

However, as stands, we conclude that these techniques are lacking in the Machine Learning literature — this
is an area which hopefully will develop further, as algorithmic fairness intervention becomes a more applied
discipline.

By far, most of the literature on fairness mitigation approaches follow the principle of first choosing a single
suitable notion of fairness, if not already determined by the method itself, and then achieving the specified
fairness notion by applying the intervention. There seems to be a gap in the literature regarding the
development of intervention methods seeking trade-offs between different notions of fairness. One
exception is (Kleinberg, Mullainathan, and Raghavan 2016).

Given how important it is for practitioners to have a way of selecting between fairness methods in practice,
in the accompanying Implementation Handbook, we set out a practical way of doing this. However, we hope
that this can be iterated and improved upon as the field evolves.

04.5 Non-holistic nature of algorithmic fairness definitions

Closely tied to their mutual incompatibility, another key limitation of algorithmic fairness definitions is that
they are by nature not holistic. No one definition will be right in all circumstances.

Furthermore, algorithmic definitions struggle to encompass or codify wider more qualitative characteristics
of fairness, which as discussed early on, do not lend themselves well to mathematical precision but are
nonetheless extremely important.

04.6 Limits of responsibility for correcting systemic unfairness

Unfairness in algorithms generally occurs due to the perpetuation or exacerbation of a variety of existing
biases in the underlying data set on which an algorithm is trained, including historical, measurement and
population bias (Mehrabi et al. 2019; Olteanu et al. 2019). Mitigating unfair decision making must be
addressed in order to create a sustainable and equal society. However, in addition to identifying the right
steps towards long-term fair decision making, a core issue is the question about whom should be viewed as
responsible for achieving fairness, and what are the consequences on a legal or professional level of
arguably unfair decision making.

The question arises to what degree commercial organisations can be considered responsible for the
mitigation of bias across society. In many situations, algorithmic decision making simply perpetuates
existing biases, which are based on historical artifacts, whose roots lie in the past and are not due to any
current company procedures or cultures.
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04.7 Sources of unfairness and causality

The algorithmic definitions and intervention approaches discussed in sections 02 and 03 generally do not
help with identifying sources or causes of unfairness, only observing symptoms in practice.

Defining fairness based on causal inference (Kusner et al. 2017; Kilbertus et al. 2018) has been picked up in
the literature only to a limited extent (Garg et al. 2019; Chiappa and Gillam 2018) due to the difficulty of
knowing the underlying causal graph, i.e, validating the causal implications assumed for the task at hand. In
order to avoid this problem, (Russell et al. 2017) propose a method which achieves approximately fair
predictions with respect to multiple possible causal models at once.

04.8 Long-term impact of fairness mitigation strategies

The definitions of fairness introduced in section 02 are “static”, in the sense that we generally measure them
on a snapshot of the population at a particular moment in time. We should expect however that making an
intervention into model predictions in order to impose fairness constraints will cause that population to
change over time. In the financial and recruiting sectors under consideration in this report, for example,
allocation of financial support and jobs will alter the distribution of wealth and opportunity within the
population.

Failing to account for these dynamics risks leading to interventions that are actively counter-productive,
indeed there are cases where a supposedly fair intervention leads to greater unfairness than without the
intervention (Kusner et al. 2017; Liu et al. 2018).

Algorithm designers must also consider the possible effects of strategic manipulation, i.e. individuals take
action to change their attributes in order to achieve a more favourable outcome. For example, hypothetically
a Natural Language Processing-based algorithm used for screening job applicants may evaluate particular
words or phrases more favourably when included in a CV or application form. As a result, if known,
individuals could be incentivised to use these words to achieve a more favourable evaluation, even if it does
change their underlying ability to do the job. However, the cost of manipulation may typically be higher for the
disadvantaged group. In the case of our example, knowledge about how to ‘game’ the algorithm may be only
obtainable by better networked groups. The differing costs of manipulation can thus result in disparities
between protected groups being exaggerated (Hu et al. 2019).

On causal modelling

One may argue that in order to correct bias, one needs to understand the underlying sources. Hence, part of
the problem is that most debiasing approaches do not capture how their intervention propagates through
and influences the world it is applied to in terms of causal relationships (Kusner et al. 2017).

The causal approaches, introduced in section 02 and set out in more detail in Annex A, seek to address this
precise issue. However, they are often impractical as they require the knowledge of a causal graph® for the
task at hand, which is typically not fully known or too complicated to capture in many real-world situations.
Seeking to understand this causal graph can itself introduce further bias, as often these relationships will be
less well understood for minority groups with less data. Authors (Russell et al. 2017) try to address the
problem of exact causal specification by a framework that integrates multiple competing causal graphs at
once, and that subsequently trains a model that is approximately fair across all of them.

In order to make causal models more tractable, we often make even more restrictive assumptions that
aren't always realistic. There are some approaches to getting around having to make such assumptions, but
they are themselves very complicated.

° In simple terms, a causal graph maps the dynamics of how an input feature drives the outcome of interest.
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On reinforcement learning

A static view of fairness neglects that most decisions in the real world are actually taken in sequence. For
example, a company hiring new employees over time will factor the current employee pool when making
future recruitment decisions. Besides the already discussed causal approach, consequences of these
individual decisions which generally influence the dynamics of the world can also be addressed within an
online learning setup (Jabbari et al. 2017). The ideal decision policy is the one that promotes fairness in the
long run.

04.9 Unfairness when fair algorithms are combined

It is generally not well understood in which case a system made up of several machine learning algorithms,
which are fair individually, satisfies fairness guarantees. For instance, (Dwork and llvento 20184, [b] 2018)
show that both Group and Individual Fairness can degrade when two fair predictors for two original tasks are
composed into one task by making these tasks compete with each other. This means that different tasks
which are, each separately considered, addressed in a fair way may finally be addressed unfairly as part of a
larger pipeline of independent tasks, which might lead to significant social implications.

Following (Dwork and llvento 2018a), let us for example assume that there are two different advertisers on
one website competing for users who visit the site, say, one for goods purchases and the other for a job. It is
further assumed that each advertiser, considered in isolation, bids in an advertising auction on potential
customers fairly. However, if both advertisers compete with each other on the same website, the resulting
bidding algorithm is unfair. Intuitively, this can be understood as follows. Two individuals with a similar job
qualification may effectively have different chances to see the job advertisement depending on the
desirability for them being advertised purchase goods, that is, if one of them is desirable to be advertised
purchasing goods and therefore be claimed by the purchase good advertiser, then that individual will not see
the job advertisement.

In such cases a fairness intervention approach would then be needed at the level at which those two
separate procedures co-exist, introducing complexity and concepts of joint responsibility/liability between
independent actors, which does not lend itself well to regulatory policy/enforcement.

04.10 Usefulness of algorithmic fairness approaches

In light of the above limitations, it may be natural to conclude that algorithmic fairness approaches have
limited usefulness for practical application, however, we do not believe that this is the case.

Rather, we believe that algorithmic fairness approaches will be essential to facilitate widespread adoption of
algorithmic decision making, and hence ultimately allowing Al to achieve its potential to positively transform
society.

In particular, the usefulness of algorithmic fairness approaches stems from their precision:

1. Quantification: algorithmic approaches allow precise quantification of fairness against different
notions, often ascribed a single number. This takes a previously ill-defined quality, and turns it into
quantitative measure which, for example, can be included in Rol calculations or impact
assessments. While there are potential downsides (e.g. the single number may not capture all types
of unfairness), this is potentially extremely important to ensure that fairness is given due weight as a
goal in its own right.

2. Definition of terms: algorithmic approaches force the policymaker or decision maker to be precise
about different terms or notions of fairness: providing clearer structure to an otherwise abstract
debate, and forcing them to self-inspect their institutional goals accordingly.

3. Trade-off with accuracy: algorithmic approaches also allow a precise quantification of the fairness /
accuracy trade-off within the model itself — again, potentially elevating the importance of achieving
fairness within overall decision making.
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What is needed is to find a way to harness this quantitative and definitional power, and combine it with wider
but equally legitimate notions of fairness into an overall generalisable approach, which can be applied in
operational contexts by practitioners and other decision makers. We set out a proposed method for doing
this in the accompanying Implementation Handbook, for further iteration and debate.

29 0f 46

faculty



05 Algorithmic Bias in the Financial Sector

Algorithmic decision making is widespread in the financial services sector and its use will only continue to
increase in the future. As a result, there is significant potential for algorithmic bias to have a detrimental
effect not only on individuals, but also on businesses. This section is based on feedback received from
fintech, banking and other organisations providing financial services, and has been complemented by
additional desk research. Our findings also build on CDEI's industry review.

05.1 Overview of revealed practices

The use of machine learning algorithms in financial services has grown rapidly in recent years. These tools
and techniques are being used across a wide range of areas, including personalised finance, marketing
optimisation, loan applications, trading, risk modelling, fraud analysis and robo-advice.

Findings from the industry review suggest that fintech companies have more flexibility and space to deploy
machine learning algorithms in innovative ways. Feedback from smaller financial firms revealed that
supervised learning has been in use for at least the past five years. As a result, fintech companies are
generally more advanced than traditional banks in terms of using algorithmic decision making.

Although established banking institutions also make use of these techniques, industry experts explained that
it is still a conservative sector, considerably constrained by strict regulatory requirements. Established
banking institutions collect vast amounts of customer data, thus are more risk-averse than the fintech sector.
Further to this, legacy core banking systems are out of date — legacy technology means that banks have
limited abilities to interface with other systems, thus restricting a bank’s ability to rapidly deliver new tools
and techniques. That being said, stakeholders confirmed that banks generally rely on simple Al tools and/or
classical statistical techniques to automate decision making.

While clear governance frameworks to audit for bias have been identified across the industry (Section 05.3),
it is clear that companies place more emphasis on detecting and mitigating bias in the pre-processing
stages (i.e. by carefully selecting variables and involving human judgement in the loop). The use of
governance and scrutinising fairness tends to diminish at the stage of testing models and assessing the
outcomes or impacts of an algorithm.

It is also important to highlight that some companies are arguably insufficiently concerned about potential
bias, because their models factor out protected characteristics, particularly in a business-to-consumer
context (B2C); or because they do not collect or use protected characteristics in their algorithms, especially
in a business-to-business (B2B) context. Our findings suggest that there is a difference in the way corporate
and individual discrimination are monitored. Irrespective of company size and business model, the use of
protected characteristics is generally avoided in the financial sector - this suggests that Fairness Through
Unawareness dominates the financial sector.

05.2 Sector specific issues

05.2.1 Differences between B2B and B2C businesses

B2B and B2C financial services both favour Fairness Through Unawareness, however the context in which
they detect and mitigate bias in algorithmic decision making largely differs due to operational differences.

The B2B fintech companies we consulted scrape publicly available data (e.g. Companies House), and to
some extent, collect corporate data internally (e.g. bank transaction details, credit reports). These companies
reported being less concerned about bias entering their models because protected characteristics are not
directly relevant to their products and services. Interestingly, stakeholders in a B2B context widely reported
that they were operating in a ‘grey area’: algorithmic driven processes might not consider discrimination,
even though it will be considered by humans.
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On the other hand, large banks or financial services, that process large amounts of personal data, are more
concerned about bias entering their models. Broadly speaking, customer-facing companies are faced with
stricter regulations, since algorithmic bias has the potential to create reputational damage or perpetuate
systemic discrimination.

One unexplored area of overlap is for B2B models that are making decisions about sole traders/ other small
companies (such as whether to extend a loan) and are to an extent relying on the credit history/ personal
information of the business owner, rather than the business itself. These models are open to issues of bias
based on a business owner’s personal information, but the outcome will impact a business rather than an
individual.

05.3 Current audit approaches

The majority of companies we consulted have governance frameworks in place to ensure that their decision
making is not biased. Globally, companies highlighted the lack of guidance and transparency on auditing
approaches. This pushes companies to develop their own interpretations and approaches to audit for bias,
which involves a combination of human oversight and technical tools.

05.3.1 Use of governance

The research identified three stages where bias detection and mitigation takes place. Based on the interview
feedback, companies follow to some extent the following typology - which broadly maps onto pre-, in-, and
post-processing:

1. Data: analysis of the data before a model is built
2. Model: analysis of the model predictions on test data
3. Impact: measure of the long-term impact of imposing fairness

According to interview feedback, all companies analyse the data they have; discuss the variables that should
be included and excluded from the model; and discuss potential risks of bias entering the system. It is at this
stage that companies integrate mitigation techniques in their models, such as excluding protected
characteristics (Fairness Through Unawareness) or integrating calibration techniques so bias monitoring
becomes a natural part of the system. Generally, the inputs and outputs of the model undergo a sign-off
process overseen by a human. This approach was common in the data-savvy fintech firms that we spoke to.

A smaller proportion of companies proceed in analysing model predictions on test data, such as
representative synthetic data or anonymised public data. We were not able to identify a commonly-used
approach across the industry and companies noted that they approach issues on a case-by-case basis. For
example, a fintech company monitors bias by checking whether new features affect the model calibration.
Another company shared that they drop problematic models without trying to fix the bias. In other cases,
companies will rely on common sense or human judgement to monitor the direction and relationships
generated by machine learning. One stakeholder recommended companies should systematically challenge
their models with counter-factual synthetic data to test model predictions.

Measuring the long-term impact of imposing fairness is difficult to conceptualise because it depends on the
context. The feedback we received was fragmented: in some cases, companies have strict explainability
guidelines, in other cases, companies are not able to interpret the drivers of their decisions. In some cases, a
human gets involved for quality assurance, particularly for the latter.
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05.3.2 In-house vs. external auditing tools

Our interviews did not reveal a commonly used approach in the industry to audit bias — companies use a mix
of in-house and external auditing tools. However, there is a preference for adapting open-source tools
internally. For example, a fintech company used the IBM toolbox (Al 360), but built a similar in-house tool to
tailor it for their needs. Amongst the companies we consulted, none had developed in-house tools from
scratch. There is therefore an appetite for open-source auditing tools.

In banking, companies also refer to the Three Lines of Defence for effective risk management and control.
Although this is not specific to Al and algorithmic decision making, interview feedback revealed that banks
adapt and apply this approach to algorithmic risks. A high-level overview of the Three Lines of Defence is
presented below (The Institute of Internal Auditors 2013):

1. In the first line of defence, management control is first in line to deal with risk management. 2. The
various risk control and compliance oversight functions established by management are in the second
line of defence. This will include staff acting in compliance with GDPR and other regulatory
requirements.

3. In the third line of defence, an internal audit provides independent assurance.

The lines of defence also play an important role within a company’s wider governance

framework. 05.4 Case studies

Case study I:

Utilising corporate data

e A B2B fintech company is specialised in solving problems in the sphere of international trade and
cross-border financial activity.

e They use algorithms to credit grants to corporates.

e No personal data is used in this context. The models are trained from the aggregation of publicly
available corporate data, however the final decision (whether to grant a loan or not) is made by a
human.

e Even though they do not use personal data, their algorithms are built to differentiate for companies that
are most likely to default (i.e. based on historical data, certain companies are more likely to default than
others in certain geographical regions).

e In this case, differentiation is based on performance-relevance: models have learnt to differentiate
against certain variables, such as geography or specific types of industries. The fintech company wants
to find companies with similar profiles.

e The expected probability of defaulting is common across all geographies — therefore, geography is taken
as an input, but it is not a single qualifier/disqualifier for business loans. It is weighed against many
other financial and non-financial corporate attributes to deliver predictions.

e The company considers that the bias they introduce is not unethical because it is corporate data. e This

case study reveals the difference in considering bias between firms that use corporate data and

customer-facing companies that use personal data. Indeed, there is a difference in the way corporate and
individual-level bias or differential outcomes are monitored: algorithmic-driven processes might not
consider differentiation in a B2B scenario (although it will be considered by humans).
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Case study 2:
Using human scrutiny to supplement Fairness Through Unawareness

Faculty held an interview with one of the leading fintech companies in London, which provides
unsecured personal loans.

The company has the ability to be flexible and technically innovative. Supervised ML is applied across
the company, they consider themselves to be ahead of banks in terms of ML use. The two typical
applications of ML are: (1) predicting whether people are able to repay personal loans; (2) Fraud
detection.

Although the fintech company regularly update their models and scrutinise internal auditing (i.e.
regulation/compliance), they are less concerned with traditional human bias because their supervised
ML models are trained on facts (e.g. whether the customer has defaulted), rather than on human
decisions (e.g. whether they were declined by underwriters). In line with ‘treating customers fairly’
requirements, the firm applies Fairness Through Unawareness (i.e. they explicitly prohibit the input of
any protected characteristics into the decision models).

One important tool is to prevent bias is ongoing monitoring: monitoring processes at the fintech
company were mainly designed to detect model inefficiency in terms of predicting credit risk. This fits
the notion of sufficiency when it is applied on protected characteristics. The company explained that
the same setup can be used to investigate separation, however, they chose to focus on sufficiency, as
it is a regulatory requirement on financial services to have an accurate estimate of credit risk.

The company also relies on human judgement. They make sure that protected characteristics aren't
included and interpret the direction in which their models are going. They found that understanding
the latter helps mitigate bias — if a variable doesn't fit the pattern, they reject it or transform it.
Humans ensure the direction of the models is sound.

This case study illustrates a company that adopts Fairness Through Unawareness in the model build
stage. The fintech firm recognises that this does not solve all problems, therefore human analysts and
auditors also actively scrutinise the models in the model validation and monitoring stages.
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06 Algorithmic Bias in the Recruitment Sector

The use of algorithms to support hiring processes has started to increase in recent years, and is likely to
become pervasive before long. Robotic process automation (RPA), and other methods to automate
non-decision-making recruitment processes - such as candidate reminders and interview scheduling - are
now widespread. A recent report has estimated that over 98% of Fortune 500 companies use ‘Applicant
Tracking Systems’ of some kind in the hiring process (Sanchez-Monedero, Dencik, and Edwards 2020), a
trend that we'd expect to see in similar surveys of large UK firms.

Building on that, machine learning and other Al approaches are starting to be deployed in recruitment
decision making processes - albeit primarily as intelligent decision-support. They have been deployed in the
sourcing, engagement, selection and onboarding stages of hiring decision making. At the same time, there
has been a growing number of consultancies and start-ups in the UK offering machine learning based hiring
solutions and tools. Industry leaders expect this trend to continue, and it could accelerate if a period of
substantial unemployment significantly increases applicant/job ratios, making the efficiency gains from
Al-assisted recruitment essential rather than desirable.

The prevalence of bias in recruitment processes is also highly topical. The history of human bias in
recruitment has been extensively documented - in its impact on individual fairness and in the creation of
homogenous workforces that lack the benefits of diverse backgrounds, skills and ideas. Some vendors
propose machine learning tools as a solution to these historical biases. Introducing Al can help humanise the
recruitment process: Al approaches can be applied to deliver complex tasks, personalise processes at a
larger scale and reduce bias in the selection of candidates, while increasing the support to humans
(Nordmark 2020). Indeed, by outsourcing the initial screening of applicants, human prejudice is detached
from the first screening. However, there is also growing awareness of the risk of bias within Al tools: bias can
enter through the data that is used to train the model or by the constraints set up by humans when designing
the models.

This section draws on feedback from recruiters and recruitment consultancies, as well as recommended
readings and desk research, to examine these issues of bias within the recruitment sector. We build on the
CDEI's industry review and recent analysis from Institute for the Future of Work (IFOW).

06.1 Drivers behind use of recruitment algorithms

The use of algorithms in different stages of the recruitment process has grown rapidly in recent years. In part
just as in other sectors, this is likely to be a function of the availability of data and technology that can be
used to drive decision making. With many time-consuming, repetitive and data-driven tasks, the recruiting
sector is an area with considerable potential for an Al-revolution.

In addition, our industry review has revealed some sector specific factors that have led to increased uptake
in the field of recruitment. Namely, a stakeholder noted that the biggest shift will be when Al will be used to
aid recruitment decision making, which could be at different points along the recruitment cycle, such as
automating the process of targeted ads or CV sifting, among other uses. It was also noted that large
Managed Service Providers (MSP) are investing the most in the adoption of Al, since they have scale and
vast amounts of data suitable for training algorithms.

Our review found that large national and international firms were the earliest and most significant users of
algorithmic processes to aid recruitment. These firms possess large graduate schemes with thousands of
applicants - equipping them with the need to sift through large numbers of applications as well as growing
repositories of data. This was also true for government departments and other public sector
organisations.

We might expect to see the use of algorithms and Al tools accelerate if there is to be a period of high
unemployment. Industry leaders have already seen substantial increases in average applicants-per-role
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ratios during the Covid-19 pandemic, and if this persists the large recruiters are likely to have to rethink
business models and how to drive efficiencies. This might see recruitment firms having to rely on
algorithms more for initial screening, and/or use Al-based decision support to help a human reviewer
to review tens or hundreds of CVs or job applications more quickly.

06.2 Overview of revealed practices

06.2.1 Outsourcing of tools and approaches

Our review found that of the firms deploying algorithms to support hiring, most bought in systems and tools
from established consultancies and other vendors, rather than developing in-house capability. It was posited
that this reflects common practice across other Human Resources functions in firms — where payroll
services, contract services, internal communications systems etc are also more likely to be bought in. This
contrasts with Financial Services, where we saw a mixture of in-house and outsourced solutions.

A survey of 18 algorithmically driven pre-employment assessment vendors found that they were
internationally focussed, with half based in the United States, but with customers across developed
economies (Raghavan et al. 2020). Most of these vendors provide off the shelf tools, with customizable
segments and functions for customers, whilst a smaller number provide more bespoke services, building and
adapting a tool to the needs of the hiring organisation.

Based on feedback from our industry review, some vendors may claim their tools are free from bias,
however, this is unlikely certain to be the case in practice. Although this is likely to change in coming years,
the concept of algorithmic bias is still considered to be relatively nascent in the recruitment industry.

Indeed, a stakeholder noted that the recruitment tech market is under-regulated, in a way which limits
incentives to consider bias. There is also lack of clarity about the allocation of responsibility or liability
between tech vendors and firms using the tech, when algorithms fail or demonstrate bias. For example,
some firms offer regulated recruitment services in practice but are not labelling them as such, which means
they are out of scope. It was also noted that the sector is not yet sophisticated enough as a buyer of tech.

06.2.2 Stages of hiring
Our review identified four stages of the hiring process where algorithms are regularly deployed:

Sourcing: support to determine which channels (e.g. jobs boards) should be used for hiring; test the most effective
ways to promote jobs on the chosen channel; and how much to spend on promotion activities.

Engagement: tools to increase the engagement of prospective applicants with a job advert. This could include chat
bots; using machine learning to personalise content for applicants; and identifying and removing words that might
put off applicants from particular backgrounds.

Selection: tools that recommend which applicants should be shortlisted, interviewed or hired. This is the most
significant stage. Tools here are varied - some machine learning models train on the data of existing staff to select
which applicants resemble high performing workers, whilst others use utilise results from competency and
psychometric tests. Others are used to support the candidate through the process, as an evolution of the
widespread use of RPA - e.g. Natural Language Processing tools which identify and flag to candidates when their
application is incomplete or fails to meet an essential criterion. In general, selection-based Al tools are still at the
stage of being used for intelligent decision support, rather than for outright algorithmic decision making.

Onboarding: tools that use data to personalise the onboarding process.
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06.3 Sector specific issues

06.3.1 Correcting for human bias

One salient debate that arose from the review was the purpose of tackling ‘bias’ in the recruitment sector.
Several interviewees argued passionately that deep biases have existed in recruitment since the inception of
organised and formalised hiring processes - and that these arise from inbuilt prejudices in human
decision-making. For several vendors of recruitment tools, the deploying of data, algorithms and machine
learning was an endeavour to correct these human biases - by making objective, dispassionate decisions
that can be mathematically evaluated. This is not a defense of biased models, but a reminder that the
alternative to an algorithm-led approach is not a bias-free world.

However, some firms argue that switching to machine learning is a flawed solution for avoiding bias. This is
because for all ‘selection’ process designs described above, there are still important human decisions
needed - such as subjective judgements about preferable traits that are themselves prone to bias. Further,
any training data or baseline assumptions used by models are likely to be based on existing employees or
past employment practices that were themselves the beneficiaries of human bias. These consultancy firms
argue that it is more important to train recruiters to recognise and accommodate their own biases than to
replace human recruiters with models. The response of companies that develop machine learning tools is to
base their models on more objective criteria such as test score performance.

06.03.2 Dispute over fairness objective

The argument above is sometimes taken even further in the pursuit of a ‘fair’ workplace, to argue that hiring
processes needed to be consciously biased in order to correct for past biases in the other direction. This
belief in diversity - that diverse backgrounds and ideas improve organisational performance - can lead firms
to seek characteristics that are correlated with groups that they feel are underrepresented in their workplace,
such as women and ethnic minorities. This debate is adjacent rather than central to a discussion of
algorithmic bias, though it remains connected, as attempts to monitor and mitigate model bias may cause
problems for organisations seeking to use machine learning to positively discriminate.

06.4 Current audit approaches

06.4.1 Audit within outsourced solutions

The review found that vendors of machine learning tools used in recruitment all had established processes
for auditing their models - both off the shelf tools and the bespoke tools they developed for clients. The most
elaborate audit process had three stages: Pre-deployment checks with dummy data and or sampled
real-world data to adjust a model prior to deployment; post deployment checks where anonymised data from
customers was used for further adjustments and correction of over-fitting; and third-party audits conducted
by academic institutions particularly focussed on identifying sources of bias. Firms used a mixture of
proprietary techniques and open-source software to test their models - Audit Al was used as an example
open source tool.

06.4.2 Influence of overseas regulation

It's notable that the auditing approach of vendors may be limited by overseas regulations or standards, as
they seek to harmonise their auditing approach across international deployments. For example, one firm
noted that in the US they are prohibited from asking for (anonymised) data containing protected
characteristics from customers that could be used to test, audit and validate their tools.
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06.5 Case studies

Case study 3:
In-house and third-party auditing

e Faculty approached pymetrics, a US-based company that uses behavioural data and Al to generate fair
and predictive algorithms for recruitment and talent mobility. Fairness is a core value of the company,
and pymetrics takes a leadership role in the field of bias detection and mitigation.

e The company uses algorithms that are trained on high-performing employees at a company and then
builds a profile of a company’s top performers to select the best fit candidate for a job. These
algorithms are then audited to remove any gender or ethnic bias.

e Decision making in recruitment looks at inputs (i.e. how do you choose data that reflects the actual
qualifications of an applicant?) and outputs (i.e. which measures are accurate and fair?). ¢ pymetrics
have also developed a three-step model to guide algorithmic decision making: ® What makes a person
good at their job? What behavioral factors predict success? ¢ What measurements enable robust
identification of these candidates?

e How do you link each candidate to their ideal role without introducing bias?

e pymetrics avoids measures that are known to be problematic, such as facial analysis, educational
history, and historically biased assessments. Instead, they focus on people’s aptitudes through a
series of cognitive tests that have been validated as predictive of job performance.

e Interestingly, the company adopts three steps to audit bias. The steps are as follows: e Pre-deployment
checks: When developing a new model, they implement a robust de-biasing algorithm to separate
signal (performance) from noise (bias). They then confirm the performance of their model against
real-world data and make tweaks where required.

e Post-deployment checks: pymetrics monitors each model after deployment, and actively
improves models wherever possible. In addition, they confirm success across models through
long-term meta-analysis.

o Third-party audit: pymetrics invites experts from academia and practice to review their code
and validate that their approach is unbiased.

e This case study illustrates a company with high auditing standards. Including third-party auditing and
on-going monitoring means the company detects bias early so it can quickly mitigate it. Fairness is
not only at the core of the company’s culture, but they have also developed a recruitment process that
completely ignores protected characteristics.
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Case study 4:
Automated evaluations and other in-practice techniques

e Oleeo produces recruitment software, which is deployed to large corporate organisations and central
Government.

e In this case, the recruitment platform uses algorithms for (i) sourcing; (ii) engagement; (iii) selection; and
(iv) onboarding.

e The stakeholder commented that interest in understanding the technicalities, explainability or transparency
of the software tool is mixed among its customers.

During interviews and in application forms, employers commonly use competency questions (e.g.
“demonstrate how you have achieved strong commercial outcomes?”) to screen out applicants. Real
time monitoring over a period of 6 months showed that, for some competency questions, recruiters were
rejecting responses from proportionately twice as many people of black ethnicity as those of white
ethnicity

Oleeo’s data sets include 1 million+ responses to competency questions. Oleeo trained a natural language
algorithm to be able to score the responses on the same basis as the recruiters. Oleeo also measured the
diversity impact of recruiter's decisions and the algorithm scoring. Since Oleeo found bias, the firm
adjusted the way the algorithm learned from the recruiters, using a process that optimised both on its fit
with the human decisions and the diversity outcome. In this way the algorithm only learned the human
decision making behaviours that did not lead to bias.

Oleeo then asked the algorithm to mark 10,000 new responses, where recruiters had rejected
proportionately twice as many people of black ethnicity as those of white ethnicity. The algorithm was
unbiased passing equal proportions of black and white ethnicities, resulting in a 7% improvement on
overall diversity. The algorithm was also found to be more reliable than humans who in addition to
unconscious bias, suffer from fatigue and stress resulting in more quality candidates: 12% of all answers
that were of high quality were no longer rejected.

The algorithm was productionised as a “virtual panel member”: once the recruiter decides whether an
answer is a pass or fail, the virtual panel member (i.e. the algorithm) displays how it scored the response.
When the recruiter’s and algorithm’s opinions diverge, the recruiter is prompted to re-read the candidate’s
response and make a final decision.

Oleeo provides explainability on the working mechanisms of the algorithm (both for themselves and the
client). They integrate automated evaluations, the 4/5th rule (Demographic Parity) and corresponding
fairness checks into their models. Oleeo also applies validation techniques to make comparisons over
time before the model goes into practice.

To monitor bias, the firm uses real-time visualisation tools (i.e. Tableau) to see what the algorithm is doing.
In the report, the overall performance on diversity (4/5th rule) is a key metric. Metrics on gender, age or
ethnicity are correlated with the outcome. Oleeo is therefore able to understand which variables are
correlated with diversity and how this impacts decision making.

If some variables are having an adverse impact, they are removed. Otherwise, data scientists will use an
optimisation process, where they change the parameters until the bias is removed, typically boosting
diversity by 5% to 20%.

e This is a clear example of a company using different types of in-house techniques to detect and mitigate

bias.
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09 Conclusions

Based on our work, we make the following conclusions.
Firstly, we have identified a set of challenges:

1. ‘Fairness’ by nature is an abstract concept and highly context-specific, which does not easily lend itself
to mathematical definitions and practical implementation.

2. There are myriad different algorithmic definitions of fairness and associate intervention approaches in
the Machine Learning literature to tackle this, as well as an increasing number of open-source tools
on the market. These generally centre around Group Observational notions of fairness, which are
currently most amenable to practical application. However, collectively ,the fast-changing nature of
this landscape risks creating confusion for organisational leaders and practitioners.

3. Further, there are a range of practical challenges of applying these definitions in practice. They suffer
from mutual incompatibility: there is no singular definition which will work in all cases; and the
literature has yet to come up with a satisfactory way of helping practitioners to select between
definitions and approaches. This also does not lend itself well to crisp regulatory policy as different
sectors grapple with what to expect organisations to do on fairness in their algorithms.

We have also seen from our industry deep-dives into the financial services and recruitment sectors that
algorithm and Al use is already reasonably widespread and increasing fast, but that the sectors are relatively
nascent in their approach to algorithmic bias. In both sectors, we identified appetite for greater engagement
on algorithmic fairness, more clarity on what firms should do in practice, and crucially tools and best-practice
practical guidance to put this into reality.

With these in mind, we have sought to do two things:

1. We created an end-to-end organising framework for algorithmic fairness, set out in this report, giving
for the first time a full line of sight from high-level concepts of fairness through to the range of
available open-source tools, in a structured way.

2. Further, in the accompanying Implementation Handbook, we have set out the first version of a
generalisable workflow for organisational leaders and technical practitioners to use to implement
fairness in practice, including how to balance algorithmic fairness against wider considerations, and
how to select between different algorithmic definitions. This is underpinned by Technical Standards,
defining the different terms for data science practitioners. We hope this will be iterated and
improved with further engagement, and will prove useful for achieving fairness in practice.
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Annex A: Further Fairness Definitions and Interventions

A.1 Remaining algorithmic fairness notions from the framework in Section 02.1

In Section 02.4 we discussed in detail the algorithmic fairness notions which are most relevant to
organisational leaders and practitioners, as they are most amenable to practical application. Here, we give
details on the other definitions contained within the overall organising framework set out in Figure 3 of
Section 02.

Despite their drawbacks in general applicability, some of those notions might still be a suitable choice in a
specific situation, and as being subject to current research, future developments may make them more
widely used. The definitions below follow the numbering convention from Figure 3.

A.1.1 Procedural definitions

2) Feature-Apriori Fairness, Feature-Accuracy Fairness, and Feature-Disparity Fairness

Fairness Through Unawareness has been combined with quantitative measures of Procedural Fairness
(Grgi¢-Hlaca et al. 2018). Rather than making an absolute requirement about which features should be
used, we can quantify the fairness of the features the algorithm has access to by surveying relevant
stakeholders.

More specifically, the authors introduce three measures - Feature-Apriori Fairness, Feature-Accuracy
Fairness, and Feature-Disparity Fairness - each of which assigns a number between zero and one to every
input to the algorithm, corresponding to the proportion of members of a panel that believed use of that
feature in the model was fair. Feature-Apriori Fairness asks the panel this question in an absolute sense,
whereas Feature-Accuracy Fairness asks if the use of the feature in question would be fair if it increases the
accuracy, and Feature-Disparity Fairness asks if use of the feature in question would be fair if it increases
the disparity in outcomes. In the latter case the line between Procedural Fairness and Outcome Fairness is
slightly blurred.

This approach offers a way to make Procedural Fairness more precise, and offers an interesting way to
quantify the notion of a “fair process”. By making human input the basis for the definition, these notions of
fairness are able to capture subtleties in perceptions of fairness that are otherwise difficult to quantify,
including relevant contextual information that will automatically be built in.

Perhaps the primary limitation of this approach is that it does not lend itself well to optimisation. We can
measure unfairness according to each of these definitions, but the only mechanism to change the level of
unfairness that is available to us is adding or removing features from the list of model inputs. Removing a
large proportion of the inputs has implications for performance, as noted in the paper. Additionally, whether
a feature is considered fair to use in a model will typically depend on how it is used. While this is partially
captured by the notions of feature-accuracy fairness and feature-disparity fairness, the model builder is
generally unable to guarantee how a feature will be used if included, so these measures of fairness can
miss some of those subtleties.

Categorisation: Procedural
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A.1.2 Group-based Outcome definitions

7) Subgroup Fairness

Subgroup Fairness was introduced in (Kearns et al. 2018) as a compromise between Individual and Group
fairness, and can be seen as Group fairness (e.g., Demographic Parity or Equalised Odds) on a typically
large number of structured groups.

It addresses the problem of the arguably restrictive assumptions required for Individual Fairness, such as
the availability of a suitable similarity metric. It also addresses the limitation of Group fairness to
incorporate fairness across intersections of different groups. For instance, mitigating bias against women
is not adequately addressed if it still permits bias against women who are mothers (Dwork and llvento
2018a).

Main issues for Subgroup Fairness lie in finding an appropriate selection of subgroups, in the exponential
number of possible subgroups, as well as in the computational complexity when implementing Subgroup
Fairness auditing and mitigation (Kearns et al. 2018, 2019).

Categorisation: Outcome -> Group -> Observational

8) Unresolved Discrimination

Unresolved Discrimination is one of two causal notions of Group fairness introduced by (Kilbertus et al.
2018). Similar to Conditional Demographic Parity, it takes into account a collection of “resolving variables”
with respect to which we do not consider it unfair to discriminate.

A motivating example is given by Pearl's commentary on claimed gender discrimination in admissions to
UC Berkeley. The data appeared to show that women were admitted at lower rates than men, however when
department choice was accounted for women in fact experienced a slightly higher admittance rate. In this
case, we might consider department choice a resolving variable, as individuals should be free to apply to
any department they choose, and if it so happens that women tend to favour competitive departments then
that is a legitimate reason for a disparity in outcomes.

Unresolved Discrimination formalises this idea using the language of causal inference, a more detailed
discussion of which we defer to the technical standards.

As is the case with other causal notions of fairness, the definition is attractive in its alignment with our
intuitive understanding of fairness, however it requires the specification of a causal model which is
generally a very restrictive assumption. Moreover, the mitigation strategy presented in the paper requires
an additional linearity assumption which places further restrictions on the modeller.

Categorisation: Outcome -> Group -> Causal

9) Proxy Discrimination

Proxy Discrimination is the second of two causal notions of fairness introduced by (Kilbertus et al. 2018). It
complements the notion of unresolved discrimination in the sense that rather than requiring that any
influence of the protected attributes on the outcome is mediated by resolving variables, we disallow only
the influence of the protected attribute on outcomes that arises through the use of certain proxy variables.
To quote the paper “this viewpoint acknowledges that the influence of [the protected attributes] ... may be
complex and it is too restraining to rule out all but a few designated features”.
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As with Unresolved Discrimination, the language of causal inference is required to make this precise, so we
defer to the technical standards for a more detailed discussion.

As is the case with the other causal notions of fairness that we have considered, proxy discrimination
requires the specification of a causal model which is generally a very restrictive assumption. Moreover, the
mitigation strategy presented in the paper requires additional linearity assumption which adds further
restrictions.

Categorisation: Outcome -> Group -> Causal

A.1.3 Individual-based Outcome definitions

10) Individual Fairness

Individual Fairness, explored in detail by (Dwork et al. 2012), can be summarised as the idea that “similar
individuals should be treated similarly”. Differing treatment of individuals, rather than groups of people,
forms the basis for the determination of fairness.

More precisely, if we have measures of similarity of individuals, and of outcomes, then Individual Fairness
requires that the outcomes for two individuals are at least as similar as the individuals are.

The primary challenge with applying Individual Fairness is determining suitable measures of similarity, both
for individuals and for outcomes. There are a few natural choices for outcomes, but no canonical approach
for individuals, and the level of fairness could be sensitive to these choices.

The paper (Dwork et al. 2012) suggests for example that a measure of similarity between individuals in a
loan application process could be based on comparison of their credit scores. In practice, there is a risk that
use of such a metric could hide historical or systemic biases that feature in the design of the similarity
measure itself. Thus we find that many of the considerations that would ordinarily be important for the
design of a fairness measure, instead now become relevant for the similarity measure instead.

Categorisation: Outcome -> Individual -> Observational

11) Meritocratic Fairness

Fairness considered in an online/reinforcement learning context, in which decisions are actions taken in
sequence and can lead to different quantitative rewards (Joseph et al. 2016; Jabbari et al. 2017; Joseph et
al. 2017). A fair decision is one that always favours higher quality among a group of individuals, where
quality is defined by a higher expected reward according to some function of interest (in loan application,
e.g., function that outputs how much an individual is able to repay). This fairness notion is, analogously to
Individual Fairness, defined through a metric (reward), however the notion is explicitly oriented towards the
performance goal.

Example in loan application: the individual with higher repayment rate should be offered a higher loan
(Saxena et al. 2019).

Categorisation: Outcome -> Individual -> Causal
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12) Counterfactual Fairness

Counterfactual Fairness is a notion of fairness introduced by (Kusner et al. 2017) that provides a principled
way to impose a constraint that an individual should not have received different treatment, had their
protected attributes taken different values. Making this precise requires the language of causal inference, a
discussion of which we defer to the technical standards.

While Counterfactual Fairness is a principled approach to capturing an intuitive notion of fairness, the

requirement that we specify a causal model for the data and outcomes is generally a very restrictive
assumption.

Categorisation: Outcome -> Individual -> Causal

A.2 Remaining intervention methods from the framework in Section 03.1

Below we set out and assess the currently-known intervention approaches contained within the literature for
achieving these other definitions of fairness - specifically Individual Observational definitions.

A.2.1 Pre-processing

Individual Fairness

Optimal clustering / constrained optimisation: For the details on (Zemel et al. 2013) we refer to Section 03.2.1.

A.2.2 In-processing

Individual Fairness

Constrained optimisation: (Dwork et al. 2012) introduce a classification method that minimises a loss
function associated with the classifier subject to quantitative similarity constraints, i.e., so that predictions
are close to each other if the underlying data points are close to each other according to predefined
metrics. Further, (Biega, Gummadi, and Weikum 2018) propose an algorithm based on online optimisation
which achieves individual fairness in the context of ranking algorithms.

Subgroup Fairness

Two-player zero-sum game: (Kearns et al. 2018) define fairness with respect to every combinatorial
subgroup of protected groups, and develop an algorithm that seeks the equilibrium in a zero-sum game
between a learner and an auditor in order to achieve a desired bound on statistical parity and equal
opportunity with respect to the subgroups. In a follow-up publication (Kearns et al. 2019), the authors
apply their algorithm in an extensive empirical study.

A.2.3 Post-Processing

Individual Fairness

Label modification: Due to the relabelling of data points which likely suffer from individual unfairness, (Lohia et
al. 2019) achieves besides demographic parity also individual fairness.
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